Self-assembling surfactant-like peptide A6K as potential delivery system for hydrophobic drugs
نویسندگان
چکیده
BACKGROUND Finding a suitable delivery system to improve the water solubility of hydrophobic drugs is a critical challenge in the development of effective formulations. In this study, we used A6K, a self-assembling surfactant-like peptide, as a carrier to encapsulate and deliver hydrophobic pyrene. METHODS Pyrene was mixed with A6K by magnetic stirring to form a suspension. Confocal laser scanning microscopy, transmission electron microscopy, dynamic light scattering, atomic force microscopy, fluorescence, and cell uptake measurements were carried out to study the features and stability of the nanostructures, the state and content of pyrene, as well as the pyrene release profile. RESULTS The suspension formed contained pyrene monomers trapped in the hydrophobic cores of the micellar nanofibers formed by A6K, as well as nanosized pyrene crystals wrapped up and stabilized by the nanofibers. The two different encapsulation methods greatly increased the concentration of pyrene in the suspension, and formation of pyrene crystals wrapped up by A6K nanofibers might be the major contributor to this effect. Furthermore, the suspension system could readily release and transfer pyrene into living cells. CONCLUSION A6K could be further exploited as a promising delivery system for hydrophobic drugs.
منابع مشابه
Lipid-like Self-Assembling Peptide Nanovesicles for Drug Delivery
Amphiphilic self-assembling peptides are functional materials, which, depending on the amino acid sequence, the peptide length, and the physicochemical conditions, form a variety of nanostructures including nanovesicles, nanotubes, and nanovalves. We designed lipid-like peptides with an aspartic acid or lysine hydrophilic head and a hydrophobic tail composed of six alanines (i.e., ac-A6K-CONH2,...
متن کاملDynamic behaviors of lipid-like self-assembling peptide A6D and A6K nanotubes.
Nanoscience and nanotechnology require development of nanomaterials that are amiable for molecular design from bottom up. Molecular designer self-assembling peptides are one of such nanomaterials that will become increasingly important for the endeavor. Peptides have not only been used in all aspects of biomedical and pharmaceutical research and medical products, but also have had enormous impa...
متن کاملSelf/Co-Assembling Peptide, EAR8-II, as a Potential Carrier for a Hydrophobic Anticancer Drug Pirarubicin (THP)—Characterization and in-Vitro Delivery
A short ionic-complementary peptide, EAR8-II, was employed to encapsulate the hydrophobic anticancer drug pirarubicin (THP). EAR8-II was designed to inherit advantages from two previously introduced peptides, AAP8 and EAK16-II, in their self/co-assembly. This peptide is short, simple, and inexpensive to synthesize, while possessing a low critical assembly concentration (CAC). The choice of alan...
متن کاملDiethylene glycol functionalized self-assembling peptide nanofibers and their hydrophobic drug delivery potential.
Self-assembling peptide nanofibers have emerged as important nanobiomaterials, with such applications as delivery of therapeutic agents and vaccines, nanofabrication and biomineralization, tissue engineering and regenerative medicine. Recently a new class of self-assembling peptides has been introduced, which takes into consideration amino acid pairing (AAP) strategies in the peptide sequence d...
متن کاملControlled release of paclitaxel from a self-assembling peptide hydrogel formed in situ and antitumor study in vitro
BACKGROUND A nanoscale injectable in situ-forming hydrogel drug delivery system was developed in this study. The system was based on a self-assembling peptide RADA16 solution, which can spontaneously form a hydrogel rapidly under physiological conditions. We used the RADA16 hydrogel for the controlled release of paclitaxel (PTX), a hydrophobic antitumor drug. METHODS The RADA16-PTX suspension...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015